Hippocampal slices and primary neural cell cultures and state-of-the-art double patch-clamp and slices electrophysiology is used to understand the physiological role of endocannabinoids; liquid chromatography/mass-spectrometry is used to investigate the formation and deactivation of anandamide and 2-arachidonoylglycerol in brain cells. Western blot and molecular biology approaches are employed to characterize the molecular mechanisms underlying these processes. The potential pharmacological agents that interfere with various aspects of endogenous cannabinoid function, and their therapeutic potential is explored in vitro and in vivo for many learning and memory disorders.
Dr. Balapal also investigates marijuana, synthetic cannabinoids and endocannabinoid compounds that stimulate the CB1 cannabinoid receptor and regulate signal transduction pathways in the brain hippocampus. The lab studies the endocannabinoids and their CB1 receptor signaling in the regulation of synaptic plasticity and learning and memory disorders.
In addition, the lab investigates epigenetic modifications such as histone associated DNA methylation and histone protein acetylation and methylation of many target genes including CB1 receptor gene and their transcriptional regulation in many cognitive disorders.